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Using Reactors to Measure θ13

Michael Shaevitz
Columbia University

• Motivation for reactor θ13 measurements
– What should be the sensitivity goal?
– Appearance vs. Disappearance measurements

• Phenomenology and ambiguities

• Limiting factors in a reactor disappearance measurement
– How can sensitivity be improved

• Examples of possible measurements and comparisons
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Neutrino Oscillation Roadmap

• Stage 0: Current near term program
– NuMI (K2K) checks atmospheric oscillations and measures ∆m2

23 to about 10%
– MiniBooNE makes definitive check of LSND and measures associated ∆m2

• Stage 1 - Constrain / measure sin22θ13
– NuMI /MINOS on-axis probes sin22θ13> 0.06 @ 90%CL
– NuMI/JHF offaxis with 20-50 kton detectors to probe sin22θ13> 0.01 @ 3σ level
– Two-detector, longbaseline reactor experiments probe sin22θ13> 0.01 @ 3σ level

• Stage 2 - Observe CP violation and determine the sign of ∆m2
23 with conventional 

superbeams and very large detectors (>500 ktons)
– Must have sin22θ13> 0.01
– Need to measure P(νµ→νe) then P(νµ→νe) or use constraint from a reactor νe → νe
– Need increased rate (especially for ν’s) ⇒ Need high intensity proton sources

• Stage 3 - Measurements with a Neutrino Factory
– Map out CP violation with precision for sin22θ13> 0.01
– Probe νµ→νe transitions down to sin22θ13> 0.001
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Measurements of sin22θ13

• Appearance (Offaxis Exps.)

– Ambiguity with s2
23 size

– Matter effects can be important
– CP violation (δ) effects can be 

important
– Measurement difficult:

• Look for small number of events 
over comparable background

• Disappearance (Reactor Exps)

– Direct sin2θ13 measurement 
– No matter effects
– No CP violation effects
– Measurement difficult:

• Look for slight change in 
overall neutrino rate

• Question:  Can we make reactor 
measurements for sin22θ13 ≈ 0.01
– Limit for measuring CP 

violation with conventional 
superbeams

– Level needed to combine with 
offaxis NuMI or JHF
experiments

δ δ
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Previous Reactor Experiments

• CHOOZ and Palo Verde 
Experiments probed this region
– One detector experiments

• Major systematic associated with 
reactor flux

– Detectors used liquid scintillator
with gadolinium and buffer zones 
for background reduction

– Shielding:
• CHOOZ:  300 mwe
• Palo Verde: 32 mwe

– Fiducial mass:
• CHOOZ:  5 tons @ 1km, 

5.7 GW
– ~2.2 evts/day/ton with 

0.2-0.4 bkgnd evts/day/ton  
– ~3600 ν events

• Palo Verde: 12 tons @ 0.85km, 
11.6 GW

– ~7 evts/day/ton with
2.0 bkgnd evts/day/ton

– ~26000 ν events

CHOOZ
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Going Beyond Previous Experiments

• Need higher statistics with long baseline (1-2 km)
– Use larger detectors ⇒ 50 ton units compared to previous 5-10 ton units
– As before, use large power reactors

• Possibly multiple reactors but see caveat below

• Reduce dominant reactor flux spectrum uncertainty
– Use two detectors at near and far locations

• Reduce uncertainty in relative near to far detector efficiency
– Make two detectors as identical as possible
– Systematic uncertainty in relative efficiency can be reduced by moving far 

detector to near site for cross calibration

• Measure and/or reduce background rates
– Measurements during reactor off periods best 

• Can be compromised with multiple reactors
– Use shielding and detector improvements to reduce background 

Can one reach the sin22θ13 ≈ 0.01 level at ∆m2 = 2.5×10-3 eV2 ??
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Reactor Energy 
Spectrum
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Optimum Baseline Length

• For ∆m2 = 2.5×10-3 eV2, broad minimum between 900m and 2000m
– Minimum at 1500m gives sin22θ13< 0.012 at 90% CL

• Sensitivity degrades for ∆m2 < 2.5×10-3 eV2
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Limiting Factors in Reactor Disappearance Measurements

Example 50 kton detector for 3 years 
with baselines of 1-2km to match ∆m2

atm

– Statistics:
• 70,000 (1km) to 18,000 (2km) events for one typical (3GW) reactor

⇒ δsin22θ13 ≈ 0.004 to 0.007

– Backgrounds (0.2 events/kton/day @ 300 mwe)
• 9,000 background events (measured to 3.5% to ~14%)

⇒ δsin22θ13 ≈ 0.002-0.005 (reactor off with 1 reactor exp.1 km)                    
0.01 – 0.02 (extrapolation with a two reactor exp.)

– Near/Far comparison
• Identical detectors imply ~1% relative error ⇒ δsin22θ13 ≈ 0.01-0.02
• Moveable far detector ~0.4% relative error ⇒ δsin22θ13 ≈ 0.004-0.008
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Detector and Statistics Issues

• Use extrapolation from previous 
experiments to a ~50 ton detector 

CHOOZ (5 tons), Palo Verde (12 tons), 
and Kamland (1000 tons)

– Liquid scintillator based detectors 
• Buffer region to cut down backgrounds 

from PMT and cosmic rays
• Veto region for cosmic source reduction
• Passive shielding

• Possible improvements
– Low activity PMTs
– Ultra pure Gadolinium loading to reduce 

detection time
– Moveable detectors for cross calibrations

CHOOZ

Kamland
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• The signal: Inverse β Decay followed by  Neutron Capture
νe + p → e+ + n n + Gd → 8 MeV of light

There are two types of backgrounds:
• Uncorrelated: Two separate events randomly occur in close proximity in 

time and space.
– Can be measured to high precision by swapping the order of the signal 

components in the trigger.

• Correlated:     Both parts of the signal come from the same parent event. 
– Such as two spallation neutrons from the same cosmic muon.
– Or a proton recoil produced by a fast neutron that later gets captured.

Backgrounds

CHOOZ
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• Rates for both correlated and uncorrelated backgrounds are tied to the cosmic 
rate (depth).  The uncorrelated rate is also related to radioactivity in the detector 
materials and surrounding rock. 
– Background events/ton/day:  0.1 for 600mwe, 0.2 for 300mwe, 2.0 for 32mwe

(compared to signal rate at 1km of ~1.3 event/ton/day/reactor)

• Single reactor experiment:
– Background rate can be measured during reactor off time (about 1 month/year)

• Measure background rate to ~3.5% and contribute ~0.3% or less.

• Two or more reactors, typically no “all reactor off” data ⇐ Possible Show Stopper??
Use other methods:
– Compare rates during 1 and 2 reactor operation and extrapolate to zero power 

• Measure background rates to ~15% leading to ~few % systematic error
– Use swap method (~0.3%) (Wang, Miller & Gratta, PRD62:013012)
– Use spatial effects like cosmic BGs are more likely at the top
– Reduce backgrounds by:

• Deeper experimental hall
• Improved veto efficiency
• Reduced neutron capture time  ⇒ Isotopically pure Gd-157 could reduce capture 

time by factor of 5, but not yet feasible
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Proposed Kr2Det Experiment

(Krasnoyarsk Reactor (~2 GW) in Russia)

• Two identical 46 ton detectors @ 
1000m and 115m

– ~900 8” pmts for 20% coverage
– Signal rates: 4200 events/day near 

and 55/day in far detector
– Depth 600 mwe ⇒ Background rate 

is 5 events/day
• Measured during reactor off to ~5% 

⇒ δsin22θ13 ≈ 0.004 
– Relative near/far efficiency yields 

systematic uncertainty of 0.8%

• Advantage: Existing reactor and deep 
detector halls

• Disadvantage: hard to reach sensitivity 
to sin22θ13 ≈ 0.01

Systematics Limit
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Modified Kr2Det Experiment

(Moveable Far Detector)

• Two identical 46 ton detectors @ 
1000m and 115m
– Move far detector to near site 

for 10% of the running to 
measure relative efficiency

– Relative near/far systematic 
uncertainty reduced 
significantly

7 year run
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Possible Reactors and Sites in the US

• Requirements
– Highest power for statistics

• Single reactor desirable
• Multiple reactors give increased 

flux but no full reactor off data
– Ability to construct halls and 

possibly tunnels
• Hills/Mountains allow horizontal 

tunneling that may be best
• Shallow sites possible but 

increased backgrounds
– Ability to move far detector to near 

site very desirable
• Tunnel connecting near/far sites
• Or transport by truck
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Diablo Canyon Site

• Two reactor (3.1 + 3.1 GWE) site near hill on the 
California coast

– Horizontal tunnel could give 600mwe shielding
– Single reactor off data measures bkgnd to 14%
– 115,000 far events over 4900 background events

• sin22θ13= 0.011 @ ∆m2 = 2.5x10-3 90% CL
– Possible improvements:

• Techniques needed to measure/reduce 
background since no both reactor off time

1200m

90% CL

3 σ
3 yrs
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Wolf Creek (Kansas) Site

• One reactor (3.6 GW) site on flat plan
– Shafts needed to reach 300mwe depth 

along with tunnel
– 57,000 far events over 9100 background 

events 
• Reactor off measures bkgnd to 3.5%
• sin22θ13= 0.012 @ ∆m2 = 2.5x10-3 90% CL

– Possible improvements:
• Measurement is statistics limited with 

moveable detector 
⇒ Add second 50 ton far detector

1200m

90% CL

3 σ

3 yrs



18Comparison of Possible Scenarios
• Example scenarios with 3 year data runs

– 50 ton far (near) detector at 1200m (150m)
– One (or two) 3 GW reactors

• Costs
– Detector based on similar MiniBooNE detector
– Tunnel/hall cost estimates from NuMI engineer
– Should add +50% contingency to cost

0.0250.011270.00164900115,000Moveable

0.0560.024160.0085500128,000Fixed600

0.0310.013250.00169900115,000Moveable

0.0590.025140.00810,900128,000Fixed300

0.0770.033150.001699,000115,000MoveableReactors

0.0930.040120.008110,000128,000Fixed32Two

0.0270.011270.0023460057,000Moveable

0.0550.024160.008510064,000Fixed600

0.0290.012250.0023910057,000Moveable

0.0570.024140.00810,100064,000Fixed300

0.1220.052150.002391,00057,000MoveableReactor

0.1320.056120.008101,00064,000Fixed32One

3 σ90% CLCost ($M)Rel Norm ErrBackgroundEvents FarDetectorDepth (mwe)Source

sin22θ13 @ ∆m2 = 2.5x10-3

17Tunnel&Halls at 600ft

15Tunnel& Halls at 300ft

5Tunnel&Halls at 32ft

3Hall at 600ft

2Hall at 300ft

1Hall at 32ft

5Detector

Cost ($M)Unit



19Timescale depends on the size of project, especially construction!

Small scale -- MiniBooNE (~$10M), 5 years from LOI to run
(CHOOZ also ~5 years from proposal to run)

Large scale -- NuMI (> $50M), 10 years from "idea" to run

2005 '10 '15

small scale

large scale

Reality for this project
is probably somewhere 
in between...

run

run

Expected JHF/NuMI

Reactor results will be on a 
reasonable timescale 
to complement the off axis results

Onward to precision
CP violation studies!



20

Summary and Conclusions

• A next generation reactor experiment could reach sensitivity to 
oscillations with sin22θ13≈ 0.01 and ∆m2 = 2.5x10-3 @ 90% CL

• Timescales appear reasonable as a complement to the expected 
appearance measurements and costs do not look prohibitive
– Reactor measurements can be combined with neutrino only offaxis

running to get at the θ13 physics  (Offaxis antineutrino running will 
take a long time)

• To design a 3σ measurement experiment at this level will require 
improvements:
– For a multiple reactor site, the measurement and reduction of the 

background is crucial
– For a single reactor site, one probably needs to add more far 

detectors
• An experiment with multiple 50 ton far detectors and one 50 ton near 

detector could reach the required sensitivity

As in the past an international collaboration mounting the experiment at
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Sensitivities using Energy Dependent Fits

• Need to include energy dependent systematic uncertainty in 
near/far comparison and background

1200m

90% CL

3 σ

One 3GW reactors 
with moveable detect.
at 300mwe

1200m

90% CL

3 σ

Two 3GW reactors 
with moveable detect.
at 300 mwe


